Musical scale properties are automatically processed in the human auditory cortex.

نویسندگان

  • Elvira Brattico
  • Mari Tervaniemi
  • Risto Näätänen
  • Isabelle Peretz
چکیده

While listening to music, we immediately detect 'wrong' tones that do not match our expectations based on the prior context. This study aimed to determine whether such expectations can occur preattentively, as indexed by event-related potentials (ERPs), and whether these are modulated by attentional processes. To this end, we recorded ERPs in nonmusicians while they were presented with unfamiliar melodies, containing either a pitch deviating from the equal-tempered chromatic scale (out-of-tune) or a pitch deviating from the diatonic scale (out-of-key). ERPs were recorded in a passive experiment in which subjects were distracted from the sounds and in an active experiment in which they were judging how incongruous each melody was. In both the experiments, pitch incongruities elicited an early frontal negativity that was not modulated by attentional focus. This early negativity, closely corresponding to the mismatch negativity (MMN) of the ERPs, was mainly originated in the auditory cortex and occurred in response to both pitch violations but with larger amplitude for the more salient out-of-tune pitch than the less salient out-of-key pitch. Attentional processes leading to the conscious access of musical scale information were indexed by the late parietal positivity (resembling the P600 of the ERPs) elicited in response to both incongruous pitches in the active experiment only. Our results indicate that the relational properties of the musical scale are quickly and automatically extracted by the auditory cortex even before the intervention of focused attention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Language, Music, and Brain

Introduction: Over the last centuries, scientists have been trying to figure out how the brain is learning the language. By 1980, the study of brain-language relationships was based on the study of human brain damage. But since 1980, neuroscience methods have greatly improved. There is controversy about where music, composition, or the perception of language and music are in the brain, or wheth...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

مطالعه درجات اصلی گام موسیقی ایرانی از روی طیف نتهای گام

  In this paper we have extracted the notes of Iranian scale from the traditional music played by the great musician Shahnazi on the TAR. Then, by analyzing the spectrum of the notes and by using our special averaging we have found the pitch attributed to the components’ frequency and found the interval between the notes. The results are in comple agreement with Pythagorean scale. Pitch is a su...

متن کامل

Superior formation of cortical memory traces for melodic patterns in musicians.

The human central auditory system has a remarkable ability to establish memory traces for invariant features in the acoustic environment despite continual acoustic variations in the sounds heard. By recording the memory-related mismatch negativity (MMN) component of the auditory electric and magnetic brain responses as well as behavioral performance, we investigated how subjects learn to discri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1117 1  شماره 

صفحات  -

تاریخ انتشار 2006